If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x=16x^2-16x+20x-20
We move all terms to the left:
63x-(16x^2-16x+20x-20)=0
We get rid of parentheses
-16x^2+63x+16x-20x+20=0
We add all the numbers together, and all the variables
-16x^2+59x+20=0
a = -16; b = 59; c = +20;
Δ = b2-4ac
Δ = 592-4·(-16)·20
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-69}{2*-16}=\frac{-128}{-32} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+69}{2*-16}=\frac{10}{-32} =-5/16 $
| k–9=-3 | | 3x^{2}+12x=2x+8 | | k–9=–3 | | 360/k=8 | | 6-20x+6x^2=0 | | 3x=648 | | 6+-20x+6x^2=0 | | u/3+16=43 | | 4(x-2)-3=11x.x-1 | | -1+7u=-9(-2u+5) | | 3/8a-a/12+7/2=7 | | 2d+12=46 | | (1/2)a-(1/2)=-4 | | 2s=-3s-5(-2s-9) | | P=10/6(c)4/12 | | 3/8a-9/12+7/2=7 | | 158-x=64 | | i-98,674=157,640 | | 4x+4=(7x-9) | | 2.3j+4(0.7j+2.77)=7(0.7j+2.36) | | 10b-20=10+20b | | 10x+63=5x–3 | | 4(21-x)+2x=68 | | 7s=7+7(2s-9) | | 1/2x+1/4=63/4 | | 8.8=m-(13.4) | | 8.8=m- | | (3x+8)(6x+64)=180 | | 4x+3=12x-18/6 | | 4x+3=1x-18/6 | | 7x+8(x+14)=3(6x−9)−87x+8x+14=36x−9−8 | | 64.008-d=25,767 |